Acta Crystallographica Section C
Crystal Structure Communications
ISSN 0108-2701

# Hydrogen bonding in the inner-salt zwitterion and in two different charged forms of 5,6-bis(2-pyridyl)-pyrazine-2,3-dicarboxylic acid 

Montserrat Alfonso, Yi Wang and Helen Stoeckli-Evans*

Institut de Chimie, Université de Neuchâtel, Avenue de Bellevaux 51, Case Postale 2, CH-2007 Neuchâtel, Switzerland
Correspondence e-mail: helen.stoeckli-evans@unine.ch

Received 15 May 2001
Accepted 27 June 2001
5,6-Bis(2-pyridyl)pyrazine-2,3-dicarboxylic acid exists as an inner-salt zwitterion, 3-carboxy-5-(2-pyridinio)-6-(2-pyridyl)-pyrazine-2-carboxylate, ( $\mathrm{I} a$ ), $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{4}$. The adjacent pyridine and pyridinium rings are almost coplanar due to the presence of an intramolecular hydrogen bond involving the pyridine N atom and the NH H atom of the pyridinium group. In the crystal of ( $\mathrm{I} a$ ), symmetry-related molecules are hydrogen bonded via the carboxylic acid OH group and one of the carboxylate O atoms to form a polymer, which exhibits a channel-type structure. In the $\mathrm{HCl}, \mathrm{HClO}_{4}$ and $\mathrm{HPF}_{6}$ salts, 6-carboxy-5-carboxylatopyrazine-2,3-diyldi-2-pyridinium chloride 2.25 -hydrate, (II), $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{~N}_{4} \mathrm{O}_{4}^{+} \cdot \mathrm{Cl}^{-} \cdot 2.25 \mathrm{H}_{2} \mathrm{O}, 6$-car-boxy-5-carboxylatopyrazine-2,3-diyldi-2-pyridinium perchlorate trihydrate, $(\mathrm{III} a), \mathrm{C}_{16} \mathrm{H}_{11} \mathrm{~N}_{4} \mathrm{O}_{4}^{+} \cdot \mathrm{ClO}_{4}{ }^{-} \cdot 3 \mathrm{H}_{2} \mathrm{O}$, and 6-car-boxy-5-carboxylatopyrazine-2,3-diyldi-2-pyridinium hexafluorophosphate trihydrate, (IIIb), $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{~N}_{4} \mathrm{O}_{4}{ }^{+} \cdot \mathrm{PF}_{6}{ }^{-} \cdot 3 \mathrm{H}_{2} \mathrm{O}$, both pyridine rings are protonated. In the perchlorate form, and in the isomorphous hexafluorophosphate form, the molecule possesses $C_{2}$ symmetry, with has a symmetrical intramolecular hydrogen bond involving the adjacent carboxylate and carboxylic acid substituents. In the crystals of the chloride and perchlorate (or hexafluorophosphate) salts, hydrogen-bonded polymers are formed which are threedimensional and one-dimensional, respectively.

## Comment

The potentially bis-tridentate coordinating ligand 5,6-bis(2-pyridyl)pyrazine-2,3-dicarboxylic acid, (I), was synthesized in order to study its coordination behaviour with transition metals, and it does indeed exhibit a highly diverse coordination geometry. At least eight different coordination modes have been observed in the formation of mononuclear, binuclear and polymeric coordination complexes (Alfonso et al., 2001). A prominent characteristic of this compound is its amphoteric character. It can exist as an inner-salt zwitterion, (Ia), and as different charged species, for example, as in the
chloride 2.25-hydrate, (II), or the perchlorate and hexafluorophosphate trihydrate salts, (III $a$ ) and (III b), as shown in the Scheme below.

(I)

(Ia)

(II)

(IIIa) $X^{-}=\mathrm{ClO}_{4}^{-}$
(III $b$ ) $X^{-}=\mathrm{PF}_{6}^{-}$

When recrystallized from water, compound (I) exists as the inner-salt zwitterion, (Ia) (Fig. 1). As a result of an intramolecular hydrogen bond involving the pyridinium $\mathrm{N}^{+}-\mathrm{H}$ and the pyridine N atoms, the adjacent pyridine (py) rings are almost coplanar with the central pyrazine (pz) ring, with a pyH-to-pz dihedral angle of 4.3 (1) ${ }^{\circ}$ and a py-to-pz dihedral angle of $7.9(1)^{\circ}$. The N atoms are separated by 2.528 (3) $\AA$, and this rather short intramolecular hydrogen bond [N3-H3 1.22 (3) and H3 $\cdots \mathrm{N} 41.32$ (3) A , and N3-H3 $\cdots \mathrm{N} 4167$ (3) $)^{\circ}$; Table 1] leads to a slight twist of the pyrazine ring (plane $\mathrm{C} 1 / \mathrm{N} 1 / \mathrm{C} 4$ to plane $\mathrm{C} 2 / \mathrm{N} 2 / \mathrm{C} 3)$ of $3.6(4)^{\circ}$, as well as to two unusually large exocyclic angles, C3-C4-C5 [131.0 (3) ${ }^{\circ}$ ] and $\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 10\left[131.2(2)^{\circ}\right]$. This type of hydrogen bond, with almost identical bond distances and angles, was also found in


Figure 1
The molecular structure of ( $\mathrm{I} a$ ) showing the atom-numbering scheme and displacement ellipsoids at the $50 \%$ probability level. H atoms are shown as small spheres of arbitrary radii.
the diprotonated form of tetra(2-pyridyl)pyrazine by Bock et al. (1992) and analysed theoretically. An analysis of hydrogen bonding in organoammonium $\mathrm{H}(\mathrm{N})$ atoms of this type has been made by Robertson et al. (1998).

The carboxylate group (C16/O3/O4) and the carboxylic acid group ( $\mathrm{C} 15 / \mathrm{O} 1 / \mathrm{O} 2$ ) are rotated out of the plane of the pyrazine ring. They are inclined to one another by $59.5(3)^{\circ}$, and to the pyrazine ring by 37.9 (1) and $58.3(2)^{\circ}$, respectively. In the crystal of (I $a$ ), symmetry-related molecules are hydrogen bonded via the carboxylic acid OH group and one of the carboxylate O atoms (Table 1). This results in the formation of a one-dimensional polymer with a channel-type structure (Fig. 2). A similar strong intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond, with almost identical bond distances and angles, has been observed previously in caesium trihydrogen diphthalate (Krol et al., 1983).


Figure 2
The crystal packing of ( $\mathrm{I} a)$ viewed down the $c$ axis. The hydrogen bonding is shown as dashed lines (the symmetry code is as in Table 1).

Recrystallization of ( $\mathrm{I} a$ ) from $1 M \mathrm{HCl}$ yielded colourless single crystals of (II) (Fig. 3). Here, both of the pyridine rings are protonated and they are both rotated by $\mathrm{ca} 180^{\circ}$ from their positions in ( $\mathrm{I} a$ ). They are inclined to one another by $65.6(1)^{\circ}$, and by 49.2 (1) (N3/C5-C9) and 30.8 (1) ${ }^{\circ}$ (N4/C10-C14) to the pyrazine ring. This places the pyridine N atoms slightly above and below the plane of the pyrazine ring, which is twisted by 4.9 (2) ${ }^{\circ}$ (plane $\mathrm{C} 1 / \mathrm{N} 1 / \mathrm{C} 4$ to plane C2/N2/C3). The carboxylic acid group ( $\mathrm{C} 15 / \mathrm{O} 1 / \mathrm{O} 2$ ) is out of the plane of the pyrazine ring by $75.7(1)^{\circ}$, compared with $58.3(1)^{\circ}$ in ( $\mathrm{I} a$ ). The carboxylate group ( $\mathrm{C} 16 / \mathrm{O} 3 / \mathrm{O} 4$ ) is inclined to the pyrazine ring by only $15.3(3)^{\circ}$, compared with $37.9(1)^{\circ}$ in (Ia).


Figure 3
The molecular structure of (II) showing the atom-numbering scheme and displacement ellipsoids at the $50 \%$ probability level. H atoms are shown as small spheres of arbitrary radii.

This triprotonated form, (II), also differs from (I $a$ ) in the type of hydrogen bonding. There are no intramolecular hydrogen bonds in the crystal structure of (II). However, symmetry-related molecules are linked by hydrogen bonds to form a three-dimensional hydrogen-bonded network. This involves the N atoms of both protonated pyridine rings, the O atoms of the carboxylate, the OH group of the carboxylic acid, the lattice water molecules and the $\mathrm{Cl}^{-}$anion, which participates in four hydrogen-bond interactions; details are given in Table 2 and Fig. 4.

A second triprotonated form, (III $a$ ), was obtained on slow evaporation of a solution of $(\mathrm{I} a)$ in 1 M HClO 4 . Compound (III $a$ ) possesses $C_{2}$ symmetry and its structure differs signifi-


Figure 4
The crystal packing of (II) viewed down the $b$ axis. The hydrogen bonding is shown as dashed lines (the symmetry codes are as in Table 2).


Figure 5
The molecular structure of (III $a$ ) showing the atom-numbering scheme and displacement ellipsoids at the $50 \%$ probability level. H atoms are shown as small spheres of arbitrary radii.
cantly from that of (I $a$ ) (Fig. 5). Here again, both pyridine rings are protonated and are twisted out of the plane of the pyrazine ring by $34.8(1)^{\circ}$, and inclined to one another by $62.2(1)^{\circ}$. The carboxylate and carboxylic acid groups are both inclined to the pyrazine plane by 19.7 (3) ${ }^{\circ}$ and to one another by $5.2(4)^{\circ}$. This arrangement is the result of the presence of a strong symmetrical intramolecular hydrogen bond (Table 3). This type of symmetrical hydrogen bond has been observed previously in pyrazine-2,3-dicarboxylic acid 3-amino-1,2,4triazole (Lynch et al., 1994) and in bis[dihydrogen 1,2,4,5-benzenetetracarboxylate(2-)] (Karanović et al., 1999). It is interesting to note that the deviation from planarity of the pyrazine ring is larger than in ( $\mathrm{I} a$ ) or (II), with a twist angle of $9.6(4)^{\circ}$. In the crystal, the $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{~N}_{4} \mathrm{O}_{4}{ }^{+}$cations and the lattice


Figure 6
Part of the crystal packing of (III $a$ ) viewed down the $a$ axis. The hydrogen bonding, which extends in both the $a$ and $c$ directions, is shown as dashed lines (the symmetry codes are as in Table 3).
water form a one-dimensional hydrogen-bonded polymer, separated by the disordered perchlorate anions; details are given in Table 3 and Fig. 6.

On reaction of ( $\mathrm{I} a$ ) with $\mathrm{Ag}\left[\mathrm{PF}_{6}\right]$ in water, a silver complex was not obtained, but slow evaporation of the solution gave crystals of (IIIb) (Fig. 7), which proved to be isomorphous with (III $a$ ). The structural details for (III $b$ ) are very similar to those observed for ( $\mathrm{III} a$ ). Details concerning the hydrogen bonding are given in Table 4 and Fig. 8.


Figure 7
The molecular structure of (III $b$ ) showing the atom-numbering scheme and displacement ellipsoids at the $50 \%$ probability level. H atoms are shown as small spheres of arbitrary radii.


Figure 8
Part of the crystal packing of (III $b$ ) viewed down the $a$ axis. The hydrogen bonding, which extends in both the $a$ and $c$ directions, is shown as dashed lines (the symmetry codes are as in Table 4).

## Experimental

Compound ( $\mathrm{I} a$ ) was prepared by adding 2,3-bis(2-pyridyl)quinoxaline ( $5.7 \mathrm{~g}, 20 \mathrm{mmol}$; Goodwin \& Lions, 1959) to water $(450 \mathrm{ml})$. This solution was heated to 368 K with stirring. $\mathrm{KMnO}_{4}$ $(25 \mathrm{~g}, 0.16 \mathrm{~mol})$ was then added in small portions over a period of 2 h . The reaction mixture was stirred for 1 h and the temperature reduced
to 348 K . Ethanol ( 10 ml ) was added to remove the excess $\mathrm{KMnO}_{4}$. The reaction mixture was filtered to give a colourless filtrate, which was concentrated to 20 ml and acidified with 4 MHCl until a white precipitate formed. The crude product was dissolved in water ( 15 ml ) and the solution was acidified again with concentrated HCl to yield a white solid. The product, ( $\mathrm{I} a$ ), was filtered off, washed with ethanol, recrystallized from water and dried under vacuum (yield $3.9 \mathrm{~g}, 60.5 \%$; m.p. $533-534 \mathrm{~K})$. Analysis calculated for $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{4}$ : C 59.6, H 3.1, N $17.4 \%$; found: C 59.5 , H 3.0 , N $17.3 \%$. Selected IR bands (KBr, $\left.\mathrm{cm}^{-1}\right): 3426(b r, m), 3083(w), 3026(w), 2922(w), 2854(w), 1706(m)$, 1653 (m), 1602 (vs), 1488 (s), 1433 (m), 1337 (m), 1268 (s), 1148 (s), $1115(s), 1083(s), 1040(m), 943(m), 865(m), 820(w), 793(v s)$, 743 (s); ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{D}_{2} \mathrm{O}, 200 \mathrm{MHz}, \delta$, p.p.m.): 8.84-8.82 ( $m, 2 \mathrm{H}, \mathrm{PyH}$ ), 8.46-8.37 ( $m, 2 \mathrm{H}, \mathrm{PyH}$ ), 8.08-7.99 ( $m, 4 \mathrm{H}, \mathrm{PyH}$ ) ; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}\right.$, $50 \mathrm{MHz}, \delta$, p.p.m): $170.2,150.2,148.3,148.1,147.8,147.4,130.6,130.3 ;$ DCI-MS (DCI is desorption chemical ionization) $(\mathrm{m} / \mathrm{z}): 323\left(\mathrm{MH}^{+}\right.$, 4), 322 ( $M^{+}, 2$ ). Compound (II) was obtained by dissolving (I $a$ ) in a $1 M \mathrm{HCl}$ aqueous solution, which on slow evaporation gave colourless rod-like crystals. Compound (III $a$ ) was obtained by dissolving ( $\mathrm{I} a$ ) in a $1 M \mathrm{HClO}_{4}$ aqueous solution, which on slow evaporation yielded pale-yellow block-like crystals. Compound (IIIb) was obtained by dissolving ( $\mathrm{I} a$ ) in an aqueous solution of $\mathrm{Ag}\left[\mathrm{PF}_{6}\right]$. On slow evaporation, pale-yellow block-like crystals were obtained.

## Compound (Ia)

## Crystal data

$\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{4}$
$M_{r}=322.28$
Monoclinic, $P 2_{1} / c$
$a=10.4770(10) \AA$
$b=13.523$ (2) A
$c=10.0580(10) \AA$
$\beta=110.070(10)^{\circ}$
$V=1338.5(3) \AA^{3}$
$Z=4$

## Data collection

Stoe four-circle diffractometer
20/ $\omega$ scans
2356 measured reflections
2336 independent reflections
1227 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.039$
$\theta_{\text {max }}=25^{\circ}$

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.049$
$w R\left(F^{2}\right)=0.092$
$S=0.90$
2336 reflections
258 parameters
All H-atom parameters refined

## Table 1

Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$ for (I $a$ ).

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{O} 2-\mathrm{H} 2 \mathrm{O} \cdots \mathrm{O} 4^{\mathrm{i}}$ | $1.20(4)$ | $1.29(4)$ | $2.475(3)$ | $169(3)$ |
| N3-H3N $\cdots \mathrm{N} 4$ | $1.22(3)$ | $1.32(3)$ | $2.528(3)$ | $167(3)$ |

## Compound (II)

## Crystal data

$\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{~N}_{4} \mathrm{O}_{4}{ }^{+} \cdot \mathrm{Cl}^{-} \cdot 2.25 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=399.27$
Monoclinic, $I 2 / a$
$a=19.5883$ (17) £
$b=8.0623$ (5) A
$c=22.936$ (2) $\AA$
$\beta=90.559$ (11) ${ }^{\circ}$
$V=3622.0(5) \AA^{3}$
$Z=8$
$D_{x}=1.464 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 5000 reflections
$\theta=2.1-25.9^{\circ}$
$\mu=0.26 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Rod, colourless
$0.5 \times 0.2 \times 0.1 \mathrm{~mm}$

## Data collection

| Stoe IPDS diffractometer | $R_{\text {int }}=0.055$ |
| :--- | :--- |
| $\varphi$ oscillation scans | $\theta_{\max }=25.9^{\circ}$ |
| 13718 measured reflections | $h=-24 \rightarrow 23$ |
| 3488 independent reflections | $k=-9 \rightarrow 9$ |
| 1943 reflections with $I>2 \sigma(I)$ | $l=-28 \rightarrow 28$ |

## Refinement

Refinement on $F^{2}$
All H-atom parameters refined
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.093$
$S=0.82$
3488 reflections
327 parameters
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.05 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.027$
$\Delta \rho_{\max }=0.63 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.26 \mathrm{e}^{-3}$

Table 2
Hydrogen-bonding geometry ( $\AA,^{\circ}$ ) for (II).

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{O} 2-\mathrm{H} 2 \mathrm{O} \cdots \mathrm{Cl}^{\text {i }}$ | 0.97 (4) | 2.05 (4) | 2.9996 (18) | 168 (3) |
| $\mathrm{N} 3-\mathrm{H} 3 \mathrm{~N} \cdots \mathrm{O} 4^{\text {ii }}$ | 0.94 (3) | 1.65 (3) | 2.582 (3) | 167 (2) |
| N4-H4N $\cdots$ O $1 W^{\text {iii }}$ | 0.91 (3) | 1.78 (3) | 2.674 (3) | 169 (3) |
| $\mathrm{O} 1 W-\mathrm{H} 1 A \cdots \mathrm{Cl} 1^{\text {iv }}$ | 0.83 (4) | 2.30 (4) | 3.112 (3) | 167 (3) |
| $\mathrm{O} 1 W-\mathrm{H} 1 B \cdots \mathrm{O}^{\text {v }}$ | 0.95 (4) | 1.86 (4) | 2.802 (3) | 170 (3) |
| $\mathrm{O} 2 W-\mathrm{H} 21 \cdots \mathrm{Cl} 1$ | 0.89 (9) | 2.38 (10) | 3.230 (6) | 160 (6) |
| $\mathrm{O} 2 W-\mathrm{H} 22 \cdots \mathrm{O} 3^{\mathrm{v}}$ | 0.81 (9) | 2.04 (10) | 2.794 (6) | 155 (8) |
| $\mathrm{O} 3 W-\mathrm{H} 31 \cdots \mathrm{O} 3^{v}$ | 1.00 (10) | 1.82 (10) | 2.809 (9) | 168 (7) |
| $\mathrm{O} 3 W-\mathrm{H} 32 \cdots \mathrm{Cl} 1$ | 1.05 (14) | 2.04 (14) | 3.028 (9) | 157 (9) |
| $\mathrm{O} 4 W-\mathrm{H} 41 \cdots \mathrm{Cl1}{ }^{\text {vi }}$ | 0.84 | 2.50 | 3.344 (3) | 179 |

Symmetry codes: (i) $-x, y-\frac{1}{2}, \frac{1}{2}-z$; (ii) $-x, \frac{1}{2}+y, \frac{1}{2}-z$; (iii) $x-\frac{1}{2}, 1-y, z$; (iv)
$\frac{1}{2}-x, y,-z$; (v) $\frac{1}{2}+x, 1-y, z$; (vi) $x, y-1, z$.

## Compound (IIIa)

Crystal data

| $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{~N}_{4} \mathrm{O}_{4}{ }^{+} \cdot \mathrm{ClO}_{4}{ }^{-} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ | $D_{x}=1.609 \mathrm{Mg} \mathrm{m}^{-3}$ |
| :--- | :--- |
| $M_{r}=476.79$ | Mo $K \alpha$ radiation |
| Monoclinic, $P 2 / c$ | Cell parameters from 5000 |
| $a=6.1401(7) \AA$ | reflections |
| $b=15.6358(12) \AA$ | $\theta=1.7-26.1^{\circ} \AA$ |
| $c=10.7154(8) \AA$ | $\mu=0.27 \mathrm{~mm}^{-1}$ |
| $\beta=106.934(8)^{\circ}$ | $T=223(2) \mathrm{K}$ |
| $V=984.13(15) \AA^{\circ}$ | Block, pale yellow |
| $Z=2$ | $0.36 \times 0.35 \times 0.26 \mathrm{~mm}$ |

## Data collection

| Stoe IPDS diffractometer | $R_{\text {int }}=0.033$ |
| :--- | :--- |
| $\varphi$ oscillation scans | $\theta_{\max }=25.9^{\circ}$ |
| 7650 measured reflections | $h=-7 \rightarrow 7$ |
| 1914 independent reflections | $k=-19 \rightarrow 19$ |
| 1419 reflections with $I>2 \sigma(I)$ | $l=-13 \rightarrow 13$ |

Symmetry code: (i) $x, \frac{1}{2}-y, \frac{1}{2}+z$.

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
All H -atom parameters refined
$w R\left(F^{2}\right)=0.115$
$S=1.02$
1914 reflections
190 parameters
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0786 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.18$ e $\AA^{-3}$
$\Delta \rho_{\text {min }}=-0.58$ e $\AA^{-3}$

Table 3
Hydrogen-bonding geometry ( $\AA,^{\circ}$ ) for (III $a$ ).

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{O}^{2}-\mathrm{H} 2 \mathrm{O} \cdots \mathrm{O} 2^{\mathrm{i}}$ | 1.20 | 1.20 | $2.392(3)$ | $177(4)$ |
| $\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N} \cdots \mathrm{O} 1 W$ | $0.91(2)$ | $1.78(3)$ | $2.684(2)$ | $172(2)$ |
| $\mathrm{O}^{\mathrm{i}} W-\mathrm{H} 1 A \cdots \mathrm{O} 1^{i}$ | $0.84(3)$ | $1.94(3)$ | $2.734(2)$ | $156(3)$ |
| O1 $^{2} W-\mathrm{H} 1 B \cdots \mathrm{O} 1$ | $0.86(3)$ | $1.98(3)$ | $2.830(2)$ | $172(3)$ |
| $\mathrm{O}^{2} W-\mathrm{H} 2 W A \cdots \mathrm{O}^{\mathrm{iii}}$ | 1.06 | 1.85 | $2.889(2)$ | 167 |

Symmetry codes: (i) $-x, y, \frac{1}{2}-z$; (ii) $1-x,-y,-z$; (iii) $x,-y, \frac{1}{2}+z$.

## Compound (IIIb)

## Crystal data

$\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{~N}_{4} \mathrm{O}_{4}{ }^{+} \cdot \mathrm{PF}_{6}{ }^{-} \cdot 3 \mathrm{H}_{2} \mathrm{O}$
$D_{x}=1.722 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=522.31$
Mo $K \alpha$ radiation
Monoclinic, $P 2 / c$
Cell parameters from 5000
$a=6.1910$ (6) $\AA$
$b=15.6564$ (11) $\AA$
$c=10.8349(10) \AA$
$\beta=106.400(11)^{\circ}$
$V=1007.48(15) \AA^{3}$
$Z=2$

## reflections

$\theta=1.7-26.1^{\circ}$
$\mu=0.24 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Rod, pale yellow
$0.70 \times 0.20 \times 0.15 \mathrm{~mm}$

## Data collection

Stoe IPDS diffractometer $\varphi$ oscillation scans

$$
\begin{aligned}
& R_{\text {int }}=0.029 \\
& \theta_{\max }=25.9^{\circ} \\
& h=-7 \rightarrow 7 \\
& k=-19 \rightarrow 19 \\
& l=-13 \rightarrow 13
\end{aligned}
$$

7713 measured reflections
1944 independent reflections

## Refinement

Refinement on $F^{2}$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.1018 P)^{2}\right. \\
& \quad+0.1313 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.25 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.152$
$S=1.20$
1944 reflections

All H -atom parameters refined

Table 4
Hydrogen-bonding geometry $\left(\AA,^{\circ}\right)$ for (III $b$ ).

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{O} 2-\mathrm{H} 2 \mathrm{O} \cdots \mathrm{O}^{\mathrm{i}}$ | 1.21 | 1.21 | $2.405(4)$ | $171(6)$ |
| $\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N} \cdots \mathrm{O} 1 W$ | $0.91(3)$ | $1.77(3)$ | $2.683(3)$ | $177(3)$ |
| $\mathrm{O} 1 W-\mathrm{H} 1 W A \cdots \mathrm{O}^{\text {ii }}$ | $0.79(4)$ | $1.98(4)$ | $2.739(2)$ | $160(4)$ |
| $\mathrm{O}^{\text {1 }} W-\mathrm{H} 1 W B \cdots \mathrm{O} 1$ | $0.89(4)$ | $1.96(4)$ | $2.841(3)$ | $171(4)$ |
| $\mathrm{O} 2 W-\mathrm{H} 2 W A \cdots \mathrm{O}^{\text {iii }}$ | 0.89 | 2.07 | $2.815(4)$ | 140 |

Symmetry codes: (i) $1-x, y, \frac{1}{2}-z$; (ii) $-x,-y, 1-z$; (iii) $-x, y, \frac{1}{2}-z$.

The H atoms were located from difference Fourier maps and refined isotropically, including the pyNH and $\mathrm{CO}_{2} \mathrm{H} \mathrm{H}$ atoms. For compounds ( $\mathrm{I} a$ ) and (II), the hydrogen bonds involving these H atoms are of the unusual symmetric type, hence the long $\mathrm{N}-\mathrm{H}$, $\mathrm{H} \cdots \mathrm{N}, \mathrm{O}-\mathrm{H}$ and $\mathrm{O} \cdots \mathrm{H}$ distances. This type of hydrogen bond, $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{N}$ for example, with identical bond distances and angles, has been observed previously and analysed theoretically by Bock et al. (1992). In compound (II), water molecules O2W and O3W are the same atom but disordered over two sites, with refined occupancies of 0.62 and 0.38 . In compound (III $a$ ), the perchlorate anion possesses $C_{2}$ symmetry and atoms O12, O13 and O14 are disordered. In some cases, the water H atoms could be located from difference Fourier maps and were refined isotropically. When the refinement was unstable in the final cycles of refinement they were held fixed, as were water $\mathrm{O} 4 W$ in (II) and $\mathrm{O} 2 W$ in (III $a)$ and (III $b)\left(U_{\text {iso }}=0.1 \AA^{2}\right)$.

For compound (I $a$ ), data collection: STADI4 (Stoe \& Cie, 1997); cell refinement: STADI4; data reduction: $X-R E D$ in $S T A D I 4$. For compounds (II), (III $a$ ) and (III $b$ ), data collection: EXPOSE (Stoe \& Cie, 2000); cell refinement: $C E L L$ (Stoe \& Cie, 2000). For (II) and (IIIb), data reduction: INTEGRATE (Stoe \& Cie, 2000). For (III $a$ ), data reduction: $X-R E D$ in $S T A D I 4$. For all four compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON99 (Spek, 1990); software used to prepare material for publication: SHELXL97.

Financial support from the Swiss National Science Foundation is gratefully acknowledged.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GD1159). Services for accessing these data are described at the back of the journal.

## References

Alfonso, M., Wang, Y. \& Stoeckli-Evans, H. (2001). J. Chem. Soc. Dalton Trans. In the press.
Bock, H., Vauple, T., Näther, C., Ruppert, K. \& Havlas, Z. (1992). Angew. Chem. Int. Ed. Engl. 31, 299-301.
Goodwin, H. A. \& Lions, F. (1959). J. Am. Chem. Soc. 81, 6415-6421.
Karanović, L., Poleti, D, Bogdanović, G. A. \& Spasojević-De Biré, A. (1999). Acta Cryst. C55, 911-913.
Krol, I. A., Agre, V. M., Trunov, V. K. \& Avdonina, L. M. (1983). Koord. Khim. 9, 687-693.
Lynch, D. E., Smith, G., Byriel, K. A., Kennard, C. H. L. \& Whitaker, A. K. (1994). Aust. J. Chem. 47, 309-313.

Robertson, K. N., Bakshi, P. K., Lantos, S. D., Cameron, T. S. \& Knop, O. (1998). Can. J. Chem. 76, 583-611.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Stoe \& Cie (1997). STADI4. Stoe \& Cie, Darmstadt, Germany.
Stoe \& Cie (2000). EXPOSE, CELL and INTEGRATE in IPDS Software.

